EconPapers    
Economics at your fingertips  
 

Lanthanide-doped MoS2 with enhanced oxygen reduction activity and biperiodic chemical trends

Yu Hao, Liping Wang () and Liang-Feng Huang ()
Additional contact information
Yu Hao: Chinese Academy of Sciences
Liping Wang: Chinese Academy of Sciences
Liang-Feng Huang: Chinese Academy of Sciences

Nature Communications, 2023, vol. 14, issue 1, 1-11

Abstract: Abstract Molybdenum disulfide has broad applications in catalysis, optoelectronics, and solid lubrication, where lanthanide (Ln) doping can be used to tune its physicochemical properties. The reduction of oxygen is an electrochemical process important in determining fuel cell efficiency, or a possible environmental-degradation mechanism for nanodevices and coatings consisting of Ln-doped MoS2. Here, by combining density-functional theory calculations and current-potential polarization curve simulations, we show that the dopant-induced high oxygen reduction activity at Ln-MoS2/water interfaces scales as a biperiodic function of Ln type. A defect-state pairing mechanism, which selectively stabilizes the hydroxyl and hydroperoxyl adsorbates on Ln-MoS2, is proposed for the activity enhancement, and the biperiodic chemical trend in activity is found originating from the similar trends in intraatomic 4f–5d6s orbital hybridization and interatomic Ln–S bonding. A generic orbital-chemistry mechanism is described for explaining the simultaneous biperiodic trends observed in many electronic, thermodynamic, and kinetic properties.

Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-39100-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39100-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-39100-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39100-5