EconPapers    
Economics at your fingertips  
 

In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol

Xinyi Ren, Jian Zhao, Xuning Li (), Junming Shao, Binbin Pan, Aude Salamé, Etienne Boutin, Thomas Groizard, Shifu Wang, Jie Ding, Xiong Zhang, Wen-Yang Huang, Wen-Jing Zeng, Chengyu Liu, Yanguang Li, Sung-Fu Hung (), Yanqiang Huang, Marc Robert () and Bin Liu ()
Additional contact information
Xinyi Ren: Chinese Academy of Sciences
Jian Zhao: Chinese Academy of Sciences
Xuning Li: Chinese Academy of Sciences
Junming Shao: Université Paris Cité, Laboratoire d’Electrochimie Moléculaire, CNRS
Binbin Pan: Soochow University
Aude Salamé: Université Paris Cité, Laboratoire d’Electrochimie Moléculaire, CNRS
Etienne Boutin: Université Paris Cité, Laboratoire d’Electrochimie Moléculaire, CNRS
Thomas Groizard: Université Paris Cité, Laboratoire d’Electrochimie Moléculaire, CNRS
Shifu Wang: Chinese Academy of Sciences
Jie Ding: City University of Hong Kong
Xiong Zhang: Chinese Academy of Sciences
Wen-Yang Huang: National Yang Ming Chiao Tung University
Wen-Jing Zeng: National Yang Ming Chiao Tung University
Chengyu Liu: Université Paris Cité, Laboratoire d’Electrochimie Moléculaire, CNRS
Yanguang Li: Soochow University
Sung-Fu Hung: National Yang Ming Chiao Tung University
Yanqiang Huang: Chinese Academy of Sciences
Marc Robert: Université Paris Cité, Laboratoire d’Electrochimie Moléculaire, CNRS
Bin Liu: City University of Hong Kong

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C–O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO– species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-39153-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39153-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-39153-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39153-6