EconPapers    
Economics at your fingertips  
 

Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling

Qi Yu () and Joel M. Bowman
Additional contact information
Qi Yu: Yale University
Joel M. Bowman: Emory University and Cherry L. Emerson Center for Scientific Computation

Nature Communications, 2023, vol. 14, issue 1, 1-12

Abstract: Abstract The vibrational strong coupling (VSC) between molecular vibrations and cavity photon modes has recently emerged as a promising tool for influencing chemical reactivities. Despite numerous experimental and theoretical efforts, the underlying mechanism of VSC effects remains elusive. In this study, we combine state-of-art quantum cavity vibrational self-consistent field/configuration interaction theory (cav-VSCF/VCI), quasi-classical trajectory method, along with the quantum-chemical CCSD(T)-level machine learning potential, to simulate the hydrogen bond dissociation dynamics of water dimer under VSC. We observe that manipulating the light-matter coupling strength and cavity frequencies can either inhibit or accelerate the dissociation rate. Furthermore, we discover that the cavity surprisingly modifies the vibrational dissociation channels, with a pathway involving both water fragments in their ground vibrational states becoming the major channel, which is a minor one when the water dimer is outside the cavity. We elucidate the mechanisms behind these effects by investigating the critical role of the optical cavity in modifying the intramolecular and intermolecular coupling patterns. While our work focuses on single water dimer system, it provides direct and statistically significant evidence of VSC effects on molecular reaction dynamics.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-39212-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39212-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-39212-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39212-y