EconPapers    
Economics at your fingertips  
 

Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer

Chuanhui Huang, Xinglong Shang, Xinyuan Zhou, Zhe Zhang, Xing Huang, Yang Lu, Mingchao Wang, Markus Löffler, Zhongquan Liao, Haoyuan Qi, Ute Kaiser, Dana Schwarz, Andreas Fery, Tie Wang, Stefan C. B. Mannsfeld, Guoqing Hu (), Xinliang Feng () and Renhao Dong ()
Additional contact information
Chuanhui Huang: Technische Universität Dresden
Xinglong Shang: Zhejiang University
Xinyuan Zhou: Tianjin University of Technology
Zhe Zhang: Technische Universität Dresden
Xing Huang: Technische Universität Dresden
Yang Lu: Technische Universität Dresden
Mingchao Wang: Technische Universität Dresden
Markus Löffler: Technische Universität Dresden
Zhongquan Liao: Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)
Haoyuan Qi: Technische Universität Dresden
Ute Kaiser: Central Facility for Electron Microscopy Universität Ulm
Dana Schwarz: Leibniz-Institut für Polymerforschung Dresden e.V. (IPF)
Andreas Fery: Technische Universität Dresden
Tie Wang: Tianjin University of Technology
Stefan C. B. Mannsfeld: Technische Universität Dresden
Guoqing Hu: Zhejiang University
Xinliang Feng: Technische Universität Dresden
Renhao Dong: Technische Universität Dresden

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Heterogeneous reactions associated with porous solid films are ubiquitous and play an important role in both nature and industrial processes. However, due to the no-slip boundary condition in pressure-driven flows, the interfacial mass transfer between the porous solid surface and the environment is largely limited to slow molecular diffusion, which severely hinders the enhancement of heterogeneous reaction kinetics. Herein, we report a hierarchical-structure-accelerated interfacial dynamic strategy to improve interfacial gas transfer on hierarchical conductive metal-organic framework (c-MOF) films. Hierarchical c-MOF films are synthesized via the in-situ transformation of insulating MOF film precursors using π-conjugated ligands and comprise both a nanoporous shell and hollow inner voids. The introduction of hollow structures in the c-MOF films enables an increase of gas permeability, thus enhancing the motion velocity of gas molecules toward the c-MOF film surface, which is more than 8.0-fold higher than that of bulk-type film. The c-MOF film-based chemiresistive sensor exhibits a faster response towards ammonia than other reported chemiresistive ammonia sensors at room temperature and a response speed 10 times faster than that of the bulk-type film.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-39630-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39630-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-39630-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39630-y