Geospatial mapping of distribution grid with machine learning and publicly-accessible multi-modal data
Zhecheng Wang,
Arun Majumdar () and
Ram Rajagopal ()
Additional contact information
Zhecheng Wang: Stanford University
Arun Majumdar: Stanford University
Ram Rajagopal: Stanford University
Nature Communications, 2023, vol. 14, issue 1, 1-11
Abstract:
Abstract Detailed and location-aware distribution grid information is a prerequisite for various power system applications such as renewable energy integration, wildfire risk assessment, and infrastructure planning. However, a generalizable and scalable approach to obtain such information is still lacking. In this work, we develop a machine-learning-based framework to map both overhead and underground distribution grids using widely-available multi-modal data including street view images, road networks, and building maps. Benchmarked against the utility-owned distribution grid map in California, our framework achieves > 80% precision and recall on average in the geospatial mapping of grids. The framework developed with the California data can be transferred to Sub-Saharan Africa and maintain the same level of precision without fine-tuning, demonstrating its generalizability. Furthermore, our framework achieves a R2 of 0.63 in measuring the fraction of underground power lines at the aggregate level for estimating grid exposure to wildfires. We offer the framework as an open tool for mapping and analyzing distribution grids solely based on publicly-accessible data to support the construction and maintenance of reliable and clean energy systems around the world.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-39647-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39647-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-39647-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().