EconPapers    
Economics at your fingertips  
 

Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein

Heidi Ulrichs, Ignas Gaska and Shashank Shekhar ()
Additional contact information
Heidi Ulrichs: Emory University
Ignas Gaska: Emory University
Shashank Shekhar: Emory University

Nature Communications, 2023, vol. 14, issue 1, 1-15

Abstract: Abstract Cells control actin assembly by regulating reactions at actin filament barbed ends. Formins accelerate elongation, capping protein (CP) arrests growth and twinfilin promotes depolymerization at barbed ends. How these distinct activities get integrated within a shared cytoplasm is unclear. Using microfluidics-assisted TIRF microscopy, we find that formin, CP and twinfilin can simultaneously bind filament barbed ends. Three‑color, single-molecule experiments reveal that twinfilin cannot bind barbed ends occupied by formin unless CP is present. This trimeric complex is short-lived (~1 s), and results in dissociation of CP by twinfilin, promoting formin-based elongation. Thus, the depolymerase twinfilin acts as a pro-formin pro-polymerization factor when both CP and formin are present. While one twinfilin binding event is sufficient to displace CP from the barbed-end trimeric complex, ~31 twinfilin binding events are required to remove CP from a CP-capped barbed end. Our findings establish a paradigm where polymerases, depolymerases and cappers together tune actin assembly.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-39655-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39655-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-39655-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39655-3