2D CdPS3-based versatile superionic conductors
Xin Yu and
Wencai Ren ()
Additional contact information
Xin Yu: Chinese Academy of Sciences
Wencai Ren: Chinese Academy of Sciences
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Ion transport in nanochannels is crucial for applications in life science, filtration, and energy storage. However, multivalent ion transport is more difficult than the monovalent analogues due to the steric effect and stronger interactions with channel walls, and the ion mobility decreases significantly as temperature decreases. Although many kinds of solid ionic conductors (SICs) have been developed, they can attain practically useful conductivities (0.01 S cm−1) only for monovalent ions above 0 °C. Here, we report a class of versatile superionic conductors, monolayer CdPS3 nanosheets-based membranes intercalated with diverse cations with a high density up to ∼2 nm−2. They exhibit unexpectedly similar superhigh ion conductivities for monovalent (K+, Na+, Li+) and multivalent ions (Ca2+, Mg2+, Al3+), ∼0.01 to 0.8 S cm−1 in the temperature range of −30 ‒ 90 °C, which are one to two orders of magnitude higher than those of the corresponding best SICs. We reveal that the high conductivity originates from the concerted movement of high-density cations in the well-ordered nanochannels with high mobility and low energy barrier. Our work opens an avenue for designing superionic conductors that can conduct various cations and provides possibilities for discovering unusual nanofluidic phenomena in nanocapillaries.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-39725-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39725-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-39725-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().