The emergence of three-dimensional chiral domain walls in polar vortices
Sandhya Susarla (),
Shanglin Hsu,
Fernando Gómez-Ortiz,
Pablo García-Fernández,
Benjamin H. Savitzky,
Sujit Das,
Piush Behera,
Javier Junquera,
Peter Ercius,
Ramamoorthy Ramesh () and
Colin Ophus ()
Additional contact information
Sandhya Susarla: Lawrence Berkeley National Laboratory
Shanglin Hsu: Lawrence Berkeley National Laboratory
Fernando Gómez-Ortiz: Universidad de Cantabria, Cantabria Campus Internacional Santander
Pablo García-Fernández: Universidad de Cantabria, Cantabria Campus Internacional Santander
Benjamin H. Savitzky: Lawrence Berkeley National Laboratory
Sujit Das: Indian Institute of Science
Piush Behera: University of California
Javier Junquera: Universidad de Cantabria, Cantabria Campus Internacional Santander
Peter Ercius: Lawrence Berkeley National Laboratory
Ramamoorthy Ramesh: Lawrence Berkeley National Laboratory
Colin Ophus: Lawrence Berkeley National Laboratory
Nature Communications, 2023, vol. 14, issue 1, 1-7
Abstract:
Abstract Chirality or handedness of a material can be used as an order parameter to uncover the emergent electronic properties for quantum information science. Conventionally, chirality is found in naturally occurring biomolecules and magnetic materials. Chirality can be engineered in a topological polar vortex ferroelectric/dielectric system via atomic-scale symmetry-breaking operations. We use four-dimensional scanning transmission electron microscopy (4D-STEM) to map out the topology-driven three-dimensional domain walls, where the handedness of two neighbor topological domains change or remain the same. The nature of the domain walls is governed by the interplay of the local perpendicular (lateral) and parallel (axial) polarization with respect to the tubular vortex structures. Unique symmetry-breaking operations and the finite nature of domain walls result in a triple point formation at the junction of chiral and achiral domain walls. The unconventional nature of the domain walls with triple point pairs may result in unique electrostatic and magnetic properties potentially useful for quantum sensing applications.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40009-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40009-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40009-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().