Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides
Zeyu Wang,
William A. Goddard and
Hai Xiao ()
Additional contact information
Zeyu Wang: Tsinghua University
William A. Goddard: California Institute of Technology
Hai Xiao: Tsinghua University
Nature Communications, 2023, vol. 14, issue 1, 1-10
Abstract:
Abstract Oxygen evolution reaction (OER) is of crucial importance to sustainable energy and environmental engineering, and layered double hydroxides (LDHs) are among the most active catalysts for OER in alkaline conditions, but the reaction mechanism for OER on LDHs remains controversial. Distinctive types of reaction mechanisms have been proposed for the O-O coupling in OER, yet they compose a coupled reaction network with competing kinetics dependent on applied potentials. Herein, we combine grand-canonical methods and micro-kinetic modeling to unravel that the nature of dominant mechanism for OER on LDHs transitions among distinctive types as a function of applied potential, and this arises from the interplay among applied potential and competing kinetics in the coupled reaction network. The theory-predicted overpotentials, Tafel slopes, and findings are in agreement with the observations of experiments including isotope labelling. Thus, we establish a computational methodology to identify and elucidate the potential-dependent mechanisms for electrochemical reactions.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40011-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40011-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40011-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().