EconPapers    
Economics at your fingertips  
 

RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles

Michael A. Longo, Sunetra Roy, Yue Chen, Karl-Heinz Tomaszowski, Andrew S. Arvai, Jordan T. Pepper, Rebecca A. Boisvert, Selvi Kunnimalaiyaan, Caezanne Keshvani, David Schild, Albino Bacolla, Gareth J. Williams (), John A. Tainer () and Katharina Schlacher ()
Additional contact information
Michael A. Longo: UT MD Anderson Cancer Center
Sunetra Roy: UT MD Anderson Cancer Center
Yue Chen: UT MD Anderson Cancer Center
Karl-Heinz Tomaszowski: UT MD Anderson Cancer Center
Andrew S. Arvai: The Scripps Research Institute
Jordan T. Pepper: University of Calgary
Rebecca A. Boisvert: UT MD Anderson Cancer Center
Selvi Kunnimalaiyaan: UT MD Anderson Cancer Center
Caezanne Keshvani: UT MD Anderson Cancer Center
David Schild: Lawrence Berkeley National Laboratory
Albino Bacolla: UT MD Anderson Cancer Center
Gareth J. Williams: University of Calgary
John A. Tainer: UT MD Anderson Cancer Center
Katharina Schlacher: UT MD Anderson Cancer Center

Nature Communications, 2023, vol. 14, issue 1, 1-16

Abstract: Abstract RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5’ RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-40096-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40096-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-40096-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40096-1