Kinetic drop friction
Xiaomei Li,
Francisco Bodziony,
Mariana Yin,
Holger Marschall,
Rüdiger Berger and
Hans-Jürgen Butt ()
Additional contact information
Xiaomei Li: Max Planck Institute for Polymer Research
Francisco Bodziony: Technische Universität Darmstadt
Mariana Yin: Technische Universität Darmstadt
Holger Marschall: Technische Universität Darmstadt
Rüdiger Berger: Max Planck Institute for Polymer Research
Hans-Jürgen Butt: Max Planck Institute for Polymer Research
Nature Communications, 2023, vol. 14, issue 1, 1-10
Abstract:
Abstract Liquid drops sliding on tilted surfaces is an everyday phenomenon and is important for many industrial applications. Still, it is impossible to predict the drop’s sliding velocity. To make a step forward in quantitative understanding, we measured the velocity $$(U)$$ ( U ) , contact width $$(w)$$ ( w ) , contact length $$(L)$$ ( L ) , advancing $$({\theta }_{{{{{{\rm{a}}}}}}})$$ ( θ a ) , and receding contact angle $$({\theta }_{{{{{{\rm{r}}}}}}})$$ ( θ r ) of liquid drops sliding down inclined flat surfaces made of different materials. We find the friction force acting on sliding drops of polar and non-polar liquids with viscosities ( $${\eta }$$ η ) ranging from 10−3 to 1 $${{{{{\rm{Pa}}}}}}\cdot {{{{{\rm{s}}}}}}$$ Pa ⋅ s can empirically be described by $${F}_{{{{{{\rm{f}}}}}}}(U)={F}_{0}+\beta w\eta U$$ F f ( U ) = F 0 + β w η U for a velocity range up to 0.7 ms−1. The dimensionless friction coefficient $$(\beta )$$ ( β ) defined here varies from 20 to 200. It is a material parameter, specific for a liquid/surface combination. While static wetting is fully described by $${\theta }_{{{{{{\rm{a}}}}}}}$$ θ a and $${\theta }_{{{{{{\rm{r}}}}}}}$$ θ r , for dynamic wetting the friction coefficient is additionally necessary.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40289-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40289-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40289-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().