Non-destructive erosive wear monitoring of multi-layer coatings using AI-enabled differential split ring resonator based system
Vishal Balasubramanian,
Omid Niksan,
Mandeep C. Jain,
Kevin Golovin and
Mohammad H. Zarifi ()
Additional contact information
Vishal Balasubramanian: University of British Columbia
Omid Niksan: University of British Columbia
Mandeep C. Jain: University of British Columbia
Kevin Golovin: University of Toronto
Mohammad H. Zarifi: University of British Columbia
Nature Communications, 2023, vol. 14, issue 1, 1-12
Abstract:
Abstract Unprotected surfaces where a coating has been removed due to erosive wear can catastrophically fail from corrosion, mechanical impingement, or chemical degradation, leading to major safety hazards, financial losses, and even fatalities. As a preventive measure, industries including aviation, marine and renewable energy are actively seeking solutions for the real-time and autonomous monitoring of coating health. This work presents a real-time, non-destructive inspection system for the erosive wear detection of coatings, by leveraging artificial intelligence enabled microwave differential split ring resonator sensors, integrated to a smart, embedded monitoring circuitry. The differential microwave system detects the erosion of coatings through the variations of resonant characteristics of the split ring resonators, located underneath the coating layer while compensating for the external noises. The system’s response and performance are validated through erosive wear tests on single- and multi-layer polymeric coatings up to a thickness of 2.5 mm. The system is capable of distinguishing which layer is being eroded (for multi-layer coatings) and estimating the wear depth and rate through its integration with a recurrent neural network-based predictive analytics model. The synergistic combination of artificial intelligence enabled microwave resonators and a smart monitoring system further demonstrates its practicality for real-world coating erosion applications.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40636-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40636-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40636-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().