EconPapers    
Economics at your fingertips  
 

Word and bit line operation of a 1 × 1 μm2 superconducting vortex-based memory

Taras Golod, Lise Morlet-Decarnin and Vladimir M. Krasnov ()
Additional contact information
Taras Golod: Stockholm University, AlbaNova University Center
Lise Morlet-Decarnin: Stockholm University, AlbaNova University Center
Vladimir M. Krasnov: Stockholm University, AlbaNova University Center

Nature Communications, 2023, vol. 14, issue 1, 1-8

Abstract: Abstract The lack of dense random access memory is one of the main bottlenecks for the creation of a digital superconducting computer. In this work we study experimentally vortex-based superconducting memory cells. Three main results are obtained. First, we test scalability and demonstrate that the cells can be straightforwardly miniaturized to submicron sizes. Second, we emphasize the importance of conscious geometrical engineering. In the studied devices we introduce an asymmetric easy track for vortex motion and show that it enables a controllable manipulation of vortex states. Finally, we perform a detailed analysis of word and bit line operation of a 1 × 1 μm2 cell. High-endurance, non-volatile operation at zero magnetic field is reported. Remarkably, we observe that the combined word and bit line threshold current is significantly reduced compared to the bare word-line operation. This could greatly improve the selectivity of individual cell addressing in a multi-cell RAM. The achieved one square micron area is an important milestone and a significant step forward towards creation of a dense cryogenic memory.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-40654-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40654-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-40654-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40654-7