EconPapers    
Economics at your fingertips  
 

Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force

Takaaki Dohi (), Markus Weißenhofer (), Nico Kerber, Fabian Kammerbauer, Yuqing Ge, Klaus Raab, Jakub Zázvorka, Maria-Andromachi Syskaki, Aga Shahee, Moritz Ruhwedel, Tobias Böttcher, Philipp Pirro, Gerhard Jakob, Ulrich Nowak and Mathias Kläui ()
Additional contact information
Takaaki Dohi: Institut für Physik, Johannes Gutenberg-Universität Mainz
Markus Weißenhofer: Universität Konstanz
Nico Kerber: Institut für Physik, Johannes Gutenberg-Universität Mainz
Fabian Kammerbauer: Institut für Physik, Johannes Gutenberg-Universität Mainz
Yuqing Ge: Institut für Physik, Johannes Gutenberg-Universität Mainz
Klaus Raab: Institut für Physik, Johannes Gutenberg-Universität Mainz
Jakub Zázvorka: Charles University
Maria-Andromachi Syskaki: Institut für Physik, Johannes Gutenberg-Universität Mainz
Aga Shahee: Institut für Physik, Johannes Gutenberg-Universität Mainz
Moritz Ruhwedel: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Tobias Böttcher: Graduate School of Excellence Materials Science in Mainz
Philipp Pirro: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Gerhard Jakob: Institut für Physik, Johannes Gutenberg-Universität Mainz
Ulrich Nowak: Universität Konstanz
Mathias Kläui: Institut für Physik, Johannes Gutenberg-Universität Mainz

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-40720-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40720-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-40720-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40720-0