Topology stabilized fluctuations in a magnetic nodal semimetal
Nathan C. Drucker (),
Thanh Nguyen,
Fei Han,
Phum Siriviboon,
Xi Luo,
Nina Andrejevic,
Ziming Zhu,
Grigory Bednik,
Quynh T. Nguyen,
Zhantao Chen,
Linh K. Nguyen,
Tongtong Liu,
Travis J. Williams,
Matthew B. Stone,
Alexander I. Kolesnikov,
Songxue Chi,
Jaime Fernandez-Baca,
Christie S. Nelson,
Ahmet Alatas,
Tom Hogan,
Alexander A. Puretzky,
Shengxi Huang,
Yue Yu () and
Mingda Li ()
Additional contact information
Nathan C. Drucker: MIT
Thanh Nguyen: MIT
Fei Han: MIT
Phum Siriviboon: MIT
Xi Luo: University of Shanghai for Science and Technology
Nina Andrejevic: Argonne National Laboratory
Ziming Zhu: Hunan Normal University
Grigory Bednik: MIT
Quynh T. Nguyen: MIT
Zhantao Chen: SLAC National Accelerator Laboratory
Linh K. Nguyen: MIT
Tongtong Liu: MIT
Travis J. Williams: Oak Ridge National Laboratory
Matthew B. Stone: Oak Ridge National Laboratory
Alexander I. Kolesnikov: Oak Ridge National Laboratory
Songxue Chi: Oak Ridge National Laboratory
Jaime Fernandez-Baca: Oak Ridge National Laboratory
Christie S. Nelson: Brookhaven National Laboratory
Ahmet Alatas: Argonne National Laboratory
Tom Hogan: Quantum Design, Inc.
Alexander A. Puretzky: Oak Ridge National Laboratory
Shengxi Huang: Rice University
Yue Yu: Fudan University
Mingda Li: MIT
Nature Communications, 2023, vol. 14, issue 1, 1-9
Abstract:
Abstract The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40765-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40765-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40765-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().