Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure
Shuo Dong (),
Samuel Beaulieu,
Malte Selig,
Philipp Rosenzweig,
Dominik Christiansen,
Tommaso Pincelli,
Maciej Dendzik,
Jonas D. Ziegler,
Julian Maklar,
R. Patrick Xian,
Alexander Neef,
Avaise Mohammed,
Armin Schulz,
Mona Stadler,
Michael Jetter,
Peter Michler,
Takashi Taniguchi,
Kenji Watanabe,
Hidenori Takagi,
Ulrich Starke,
Alexey Chernikov,
Martin Wolf,
Hiro Nakamura,
Andreas Knorr,
Laurenz Rettig () and
Ralph Ernstorfer ()
Additional contact information
Shuo Dong: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Samuel Beaulieu: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Malte Selig: Technische Universität Berlin
Philipp Rosenzweig: Max Planck Institute for Solid State Research
Dominik Christiansen: Technische Universität Berlin
Tommaso Pincelli: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Maciej Dendzik: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Jonas D. Ziegler: Technische Universität Dresden
Julian Maklar: Fritz-Haber-Institut der Max-Planck-Gesellschaft
R. Patrick Xian: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Alexander Neef: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Avaise Mohammed: Max Planck Institute for Solid State Research
Armin Schulz: Max Planck Institute for Solid State Research
Mona Stadler: University of Stuttgart
Michael Jetter: University of Stuttgart
Peter Michler: University of Stuttgart
Takashi Taniguchi: National Institute for Materials Science
Kenji Watanabe: National Institute for Materials Science
Hidenori Takagi: Max Planck Institute for Solid State Research
Ulrich Starke: Max Planck Institute for Solid State Research
Alexey Chernikov: Technische Universität Dresden
Martin Wolf: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Hiro Nakamura: Max Planck Institute for Solid State Research
Andreas Knorr: Technische Universität Berlin
Laurenz Rettig: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Ralph Ernstorfer: Fritz-Haber-Institut der Max-Planck-Gesellschaft
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40815-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40815-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40815-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().