Flight trajectory prediction enabled by time-frequency wavelet transform
Zheng Zhang,
Dongyue Guo,
Shizhong Zhou,
Jianwei Zhang and
Yi Lin ()
Additional contact information
Zheng Zhang: Sichuan University
Dongyue Guo: Sichuan University
Shizhong Zhou: Sichuan University
Jianwei Zhang: Sichuan University
Yi Lin: Sichuan University
Nature Communications, 2023, vol. 14, issue 1, 1-15
Abstract:
Abstract Accurate flight trajectory prediction is a crucial and challenging task in air traffic control, especially for maneuver operations. Modern data-driven methods are typically formulated as a time series forecasting task and fail to retain high accuracy. Meantime, as the primary modeling method for time series forecasting, frequency-domain analysis is underutilized in the flight trajectory prediction task. In this work, an innovative wavelet transform-based framework is proposed to perform time-frequency analysis of flight patterns to support trajectory forecasting. An encoder-decoder neural architecture is developed to estimate wavelet components, focusing on the effective modeling of global flight trends and local motion details. A real-world dataset is constructed to validate the proposed approach, and the experimental results demonstrate that the proposed framework exhibits higher accuracy than other comparative baselines, obtaining improved prediction performance in terms of four measurements, especially in the climb and descent phase with maneuver control. Most importantly, the time-frequency analysis is confirmed to be effective to achieve the flight trajectory prediction task.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40903-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40903-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40903-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().