Long-lived spin waves in a metallic antiferromagnet
G. Poelchen (),
J. Hellwig,
M. Peters,
D. Yu. Usachov,
K. Kliemt,
C. Laubschat,
P. M. Echenique,
E. V. Chulkov,
C. Krellner,
S. S. P. Parkin,
D. V. Vyalikh,
A. Ernst and
K. Kummer ()
Additional contact information
G. Poelchen: European Synchrotron Radiation Facility
J. Hellwig: Goethe-Universität Frankfurt
M. Peters: Goethe-Universität Frankfurt
D. Yu. Usachov: Donostia International Physics Center (DIPC)
K. Kliemt: Goethe-Universität Frankfurt
C. Laubschat: Technische Universität Dresden
P. M. Echenique: Donostia International Physics Center (DIPC)
E. V. Chulkov: Donostia International Physics Center (DIPC)
C. Krellner: Goethe-Universität Frankfurt
S. S. P. Parkin: Max-Planck-Institut für Mikrostrukturphysik
D. V. Vyalikh: Donostia International Physics Center (DIPC)
A. Ernst: Max-Planck-Institut für Mikrostrukturphysik
K. Kummer: European Synchrotron Radiation Facility
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Collective spin excitations in magnetically ordered crystals, called magnons or spin waves, can serve as carriers in novel spintronic devices with ultralow energy consumption. The generation of well-detectable spin flows requires long lifetimes of high-frequency magnons. In general, the lifetime of spin waves in a metal is substantially reduced due to a strong coupling of magnons to the Stoner continuum. This makes metals unattractive for use as components for magnonic devices. Here, we present the metallic antiferromagnet CeCo2P2, which exhibits long-living magnons even in the terahertz (THz) regime. For CeCo2P2, our first-principle calculations predict a suppression of low-energy spin-flip Stoner excitations, which is verified by resonant inelastic X-ray scattering measurements. By comparison to the isostructural compound LaCo2P2, we show how small structural changes can dramatically alter the electronic structure around the Fermi level leading to the classical picture of the strongly damped magnons intrinsic to metallic systems. Our results not only demonstrate that long-lived magnons in the THz regime can exist in bulk metallic systems, but they also open a path for an efficient search for metallic magnetic systems in which undamped THz magnons can be excited.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-40963-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40963-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-40963-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().