Neural tuning instantiates prior expectations in the human visual system
William J. Harrison,
Paul M. Bays and
Reuben Rideaux ()
Additional contact information
William J. Harrison: The University of Queensland
Paul M. Bays: The University of Cambridge
Reuben Rideaux: The University of Queensland
Nature Communications, 2023, vol. 14, issue 1, 1-12
Abstract:
Abstract Perception is often modelled as a process of active inference, whereby prior expectations are combined with noisy sensory measurements to estimate the structure of the world. This mathematical framework has proven critical to understanding perception, cognition, motor control, and social interaction. While theoretical work has shown how priors can be computed from environmental statistics, their neural instantiation could be realised through multiple competing encoding schemes. Using a data-driven approach, here we extract the brain’s representation of visual orientation and compare this with simulations from different sensory coding schemes. We found that the tuning of the human visual system is highly conditional on stimulus-specific variations in a way that is not predicted by previous proposals. We further show that the adopted encoding scheme effectively embeds an environmental prior for natural image statistics within the sensory measurement, providing the functional architecture necessary for optimal inference in the earliest stages of cortical processing.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-41027-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41027-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-41027-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().