Unconventional specular optical rotation in the charge ordered state of Kagome metal CsV3Sb5
Camron Farhang,
Jingyuan Wang,
Brenden R. Ortiz,
Stephen D. Wilson and
Jing Xia ()
Additional contact information
Camron Farhang: University of California
Jingyuan Wang: University of California
Brenden R. Ortiz: University of California, Santa Barbara
Stephen D. Wilson: University of California, Santa Barbara
Jing Xia: University of California
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Kagome metals AV3Sb5 (A = K, Cs, Rb) provide a rich platform for intertwined orders, where evidence for time-reversal symmetry breaking, likely due to the long-sought loop currents, has emerged in STM and muon spin relaxation experiments. An isotropic component in the spontaneous optical rotation has also been reported and was interpreted as the magneto-optic Kerr effect. Intriguingly, the observed rotations differ by five orders of magnitude between different wavelengths and samples, suggesting more intricate physics. Here we report optical rotation and polar Kerr measurements in CsV3Sb5 crystals at the same wavelength. We observe large isotropic components of 1 milliradian in the optical rotation that do not respond to applied magnetic fields, while the spontaneous Kerr signal is less than 20 nanoradians. Our results prove unambiguously that the reported isotropic rotation is not from time-reversal symmetry breaking but represents the long-sought specular optical rotation and indicates a new intertwined order.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-41080-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41080-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-41080-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().