EconPapers    
Economics at your fingertips  
 

Azobenzene-based optoelectronic transistors for neurohybrid building blocks

Federica Corrado, Ugo Bruno, Mirko Prato, Antonio Carella, Valeria Criscuolo, Arianna Massaro, Michele Pavone, Ana B. Muñoz-García, Stiven Forti, Camilla Coletti, Ottavia Bettucci () and Francesca Santoro ()
Additional contact information
Federica Corrado: Forschungszentrum Juelich
Ugo Bruno: Istituto Italiano di Tecnologia
Mirko Prato: Istituto Italiano di Tecnologia
Antonio Carella: Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo
Valeria Criscuolo: Forschungszentrum Juelich
Arianna Massaro: Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo
Michele Pavone: Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo
Ana B. Muñoz-García: Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo
Stiven Forti: Istituto Italiano di Tecnologia
Camilla Coletti: Istituto Italiano di Tecnologia
Ottavia Bettucci: Istituto Italiano di Tecnologia
Francesca Santoro: Forschungszentrum Juelich

Nature Communications, 2023, vol. 14, issue 1, 1-12

Abstract: Abstract Exploiting the light–matter interplay to realize advanced light responsive multimodal platforms is an emerging strategy to engineer bioinspired systems such as optoelectronic synaptic devices. However, existing neuroinspired optoelectronic devices rely on complex processing of hybrid materials which often do not exhibit the required features for biological interfacing such as biocompatibility and low Young’s modulus. Recently, organic photoelectrochemical transistors (OPECTs) have paved the way towards multimodal devices that can better couple to biological systems benefiting from the characteristics of conjugated polymers. Neurohybrid OPECTs can be designed to optimally interface neuronal systems while resembling typical plasticity-driven processes to create more sophisticated integrated architectures between neuron and neuromorphic ends. Here, an innovative photo-switchable PEDOT:PSS was synthesized and successfully integrated into an OPECT. The OPECT device uses an azobenzene-based organic neuro-hybrid building block to mimic the retina’s structure exhibiting the capability to emulate visual pathways. Moreover, dually operating the device with opto- and electrical functions, a light-dependent conditioning and extinction processes were achieved faithful mimicking synaptic neural functions such as short- and long-term plasticity.

Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-41083-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41083-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-41083-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41083-2