EconPapers    
Economics at your fingertips  
 

Transfer Learning with Kernel Methods

Adityanarayanan Radhakrishnan, Max Ruiz Luyten, Neha Prasad and Caroline Uhler ()
Additional contact information
Adityanarayanan Radhakrishnan: Massachusetts Institute of Technology
Max Ruiz Luyten: Massachusetts Institute of Technology
Neha Prasad: Massachusetts Institute of Technology
Caroline Uhler: Massachusetts Institute of Technology

Nature Communications, 2023, vol. 14, issue 1, 1-12

Abstract: Abstract Transfer learning refers to the process of adapting a model trained on a source task to a target task. While kernel methods are conceptually and computationally simple models that are competitive on a variety of tasks, it has been unclear how to develop scalable kernel-based transfer learning methods across general source and target tasks with possibly differing label dimensions. In this work, we propose a transfer learning framework for kernel methods by projecting and translating the source model to the target task. We demonstrate the effectiveness of our framework in applications to image classification and virtual drug screening. For both applications, we identify simple scaling laws that characterize the performance of transfer-learned kernels as a function of the number of target examples. We explain this phenomenon in a simplified linear setting, where we are able to derive the exact scaling laws.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-41215-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41215-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-41215-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41215-8