EconPapers    
Economics at your fingertips  
 

Doubling of surface oceanic meridional heat transport by non-symmetry of mesoscale eddies

Hailin Wang, Bo Qiu, Hanrui Liu and Zhengguang Zhang ()
Additional contact information
Hailin Wang: Ocean University of China
Bo Qiu: University of Hawaii at Manoa
Hanrui Liu: Ocean University of China
Zhengguang Zhang: Ocean University of China

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Oceanic transport of heat by ubiquitous mesoscale eddies plays a critical role in regulating climate variability and redistributing excess heat absorbed by ocean under global warming. Eddies have long been simplified as axisymmetric vortices and their influence on heat transport remains unclear. Here, we combine satellite and drifter data and show that oceanic mesoscale eddies are asymmetric and directionally-dependent, and are controlled by their self-sustaining nature and their dynamical environment. Both the direction and amplitude of eddy-induced heat fluxes are significantly influenced by eddy’s asymmetry and directional dependence. When the eddy velocity field is decomposed into asymmetric and symmetric components, the eddy kinetic energy exhibits a nearly equal partition between these two components. The total eddy-induced meridional heat flux similarly doubles the heat flux induced by the symmetric components, highlighting the crucial contribution of eddy asymmetry on the magnitude of eddy-induced oceanic heat transport.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-41294-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41294-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-41294-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41294-7