Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte
Hai-Gang Qin,
Yun-Fan Du,
Yi-Yang Bai,
Fu-Zhi Li,
Xian Yue,
Hao Wang,
Jian-Zhao Peng and
Jun Gu ()
Additional contact information
Hai-Gang Qin: Southern University of Science and Technology
Yun-Fan Du: Southern University of Science and Technology
Yi-Yang Bai: Southern University of Science and Technology
Fu-Zhi Li: Southern University of Science and Technology
Xian Yue: Southern University of Science and Technology
Hao Wang: Southern University of Science and Technology
Jian-Zhao Peng: Southern University of Science and Technology
Jun Gu: Southern University of Science and Technology
Nature Communications, 2023, vol. 14, issue 1, 1-10
Abstract:
Abstract Electrochemical CO2 reduction in acidic electrolytes is a promising strategy to achieve high utilization efficiency of CO2. Although alkali cations in acidic electrolytes play a vital role in suppressing hydrogen evolution and promoting CO2 reduction, they also cause precipitation of bicarbonate on the gas diffusion electrode (GDE), flooding of electrolyte through the GDE, and drift of the electrolyte pH. In this work, we realize the electroreduction of CO2 in a metal cation-free acidic electrolyte by covering the catalyst with cross-linked poly-diallyldimethylammonium chloride. This polyelectrolyte provides a high density of cationic sites immobilized on the surface of the catalyst, which suppresses the mass transport of H+ and modulates the interfacial field strength. By adopting this strategy, the Faradaic efficiency (FE) of CO reaches 95 ± 3% with the Ag catalyst and the FE of formic acid reaches 76 ± 3% with the In catalyst in a 1.0 pH electrolyte in a flow cell. More importantly, with the metal cation-free acidic electrolyte the amount of electrolyte flooding through the GDE is decreased to 2.5 ± 0.6% of that with alkali cation-containing acidic electrolyte, and the FE of CO maintains above 80% over 36 h of operation at −200 mA·cm−2.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-41396-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41396-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-41396-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().