EconPapers    
Economics at your fingertips  
 

Unexpected doping effects on phonon transport in quasi-one-dimensional van der Waals crystal TiS3 nanoribbons

Chenhan Liu, Chao Wu, Xian Yi Tan, Yi Tao, Yin Zhang, Deyu Li, Juekuan Yang (), Qingyu Yan () and Yunfei Chen ()
Additional contact information
Chenhan Liu: Southeast University
Chao Wu: Southeast University
Xian Yi Tan: Nanyang Technological University
Yi Tao: Southeast University
Yin Zhang: Southeast University
Deyu Li: Vanderbilt University
Juekuan Yang: Southeast University
Qingyu Yan: Nanyang Technological University
Yunfei Chen: Southeast University

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Doping usually reduces lattice thermal conductivity because of enhanced phonon-impurity scattering. Here, we report unexpected doping effects on the lattice thermal conductivity of quasi-one-dimensional (quasi-1D) van der Waals (vdW) TiS3 nanoribbons. As the nanoribbon thickness reduces from ~80 to ~19 nm, the concentration of oxygen atoms has a monotonic increase along with a 7.4-fold enhancement in the thermal conductivity at room temperature. Through material characterizations and atomistic modellings, we find oxygen atoms diffuse more readily into thinner nanoribbons and more sulfur atoms are substituted. The doped oxygen atoms induce significant lattice contraction and coupling strength enhancement along the molecular chain direction while have little effect on vdW interactions, different from that doping atoms induce potential and structural distortions along all three-dimensional directions in 3D materials. With the enhancement of coupling strength, Young’s modulus is enhanced while phonon-impurity scattering strength is suppressed, significantly improving the phonon thermal transport.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-41425-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41425-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-41425-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41425-0