Kapitza-resistance-like exciton dynamics in atomically flat MoSe2-WSe2 lateral heterojunction
Hassan Lamsaadi,
Dorian Beret,
Ioannis Paradisanos,
Pierre Renucci,
Delphine Lagarde,
Xavier Marie,
Bernhard Urbaszek,
Ziyang Gan,
Antony George,
Kenji Watanabe,
Takashi Taniguchi,
Andrey Turchanin,
Laurent Lombez (),
Nicolas Combe,
Vincent Paillard and
Jean-Marie Poumirol ()
Additional contact information
Hassan Lamsaadi: Université de Toulouse
Dorian Beret: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Ioannis Paradisanos: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Pierre Renucci: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Delphine Lagarde: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Xavier Marie: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Bernhard Urbaszek: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Ziyang Gan: Friedrich Schiller University Jena, Institute of Physical Chemistry
Antony George: Friedrich Schiller University Jena, Institute of Physical Chemistry
Kenji Watanabe: National Institute for Materials Science
Takashi Taniguchi: National Institute for Materials Science
Andrey Turchanin: Friedrich Schiller University Jena, Institute of Physical Chemistry
Laurent Lombez: Université de Toulouse, INSA-CNRS-UPS, LPCNO
Nicolas Combe: Université de Toulouse
Vincent Paillard: Université de Toulouse
Jean-Marie Poumirol: Université de Toulouse
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe2-WSe2) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-41538-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41538-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-41538-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().