Mechanical metamaterials and beyond
Pengcheng Jiao,
Jochen Mueller,
Jordan R. Raney,
Xiaoyu (Rayne) Zheng and
Amir H. Alavi ()
Additional contact information
Pengcheng Jiao: Zhejiang University
Jochen Mueller: Johns Hopkins University
Jordan R. Raney: University of Pennsylvania
Xiaoyu (Rayne) Zheng: University of California
Amir H. Alavi: University of Pittsburgh
Nature Communications, 2023, vol. 14, issue 1, 1-17
Abstract:
Abstract Mechanical metamaterials enable the creation of structural materials with unprecedented mechanical properties. However, thus far, research on mechanical metamaterials has focused on passive mechanical metamaterials and the tunability of their mechanical properties. Deep integration of multifunctionality, sensing, electrical actuation, information processing, and advancing data-driven designs are grand challenges in the mechanical metamaterials community that could lead to truly intelligent mechanical metamaterials. In this perspective, we provide an overview of mechanical metamaterials within and beyond their classical mechanical functionalities. We discuss various aspects of data-driven approaches for inverse design and optimization of multifunctional mechanical metamaterials. Our aim is to provide new roadmaps for design and discovery of next-generation active and responsive mechanical metamaterials that can interact with the surrounding environment and adapt to various conditions while inheriting all outstanding mechanical features of classical mechanical metamaterials. Next, we deliberate the emerging mechanical metamaterials with specific functionalities to design informative and scientific intelligent devices. We highlight open challenges ahead of mechanical metamaterial systems at the component and integration levels and their transition into the domain of application beyond their mechanical capabilities.
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-41679-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41679-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-41679-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().