EconPapers    
Economics at your fingertips  
 

Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing

Mira L. Pöhlker (), Christopher Pöhlker, Johannes Quaas, Johannes Mülmenstädt, Andrea Pozzer, Meinrat O. Andreae, Paulo Artaxo, Karoline Block, Hugh Coe, Barbara Ervens, Peter Gallimore, Cassandra J. Gaston, Sachin S. Gunthe, Silvia Henning, Hartmut Herrmann, Ovid O. Krüger, Gordon McFiggans, Laurent Poulain, Subha S. Raj, Ernesto Reyes-Villegas, Haley M. Royer, David Walter, Yuan Wang and Ulrich Pöschl
Additional contact information
Mira L. Pöhlker: Max Planck Institute for Chemistry
Christopher Pöhlker: Max Planck Institute for Chemistry
Johannes Quaas: Leipzig University
Johannes Mülmenstädt: Leipzig University
Andrea Pozzer: Max Planck Institute for Chemistry
Meinrat O. Andreae: Max Planck Institute for Chemistry
Paulo Artaxo: Universidade de São Paulo
Karoline Block: Leipzig University
Hugh Coe: University of Manchester
Barbara Ervens: Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand
Peter Gallimore: University of Manchester
Cassandra J. Gaston: University of Miami
Sachin S. Gunthe: Indian Institute of Technology Madras
Silvia Henning: Leibniz Institute for Tropospheric Research
Hartmut Herrmann: Leibniz-Institute for Tropospheric Research
Ovid O. Krüger: Max Planck Institute for Chemistry
Gordon McFiggans: University of Manchester
Laurent Poulain: Leibniz-Institute for Tropospheric Research
Subha S. Raj: Max Planck Institute for Chemistry
Ernesto Reyes-Villegas: University of Manchester
Haley M. Royer: University of Miami
David Walter: Max Planck Institute for Chemistry
Yuan Wang: Leibniz Institute for Tropospheric Research
Ulrich Pöschl: Max Planck Institute for Chemistry

Nature Communications, 2023, vol. 14, issue 1, 1-12

Abstract: Abstract The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-41695-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41695-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-41695-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41695-8