EconPapers    
Economics at your fingertips  
 

Surfactant-free interfacial growth of graphdiyne hollow microspheres and the mechanistic origin of their SERS activity

Lu Zhang, Wencai Yi, Junfang Li, Guoying Wei, Guangcheng Xi () and Lanqun Mao ()
Additional contact information
Lu Zhang: Chinese Academy of Inspection and Quarantine
Wencai Yi: Qufu Normal University
Junfang Li: Chinese Academy of Inspection and Quarantine
Guoying Wei: China Jiliang University
Guangcheng Xi: Chinese Academy of Inspection and Quarantine
Lanqun Mao: Beijing Normal University

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract As a two-dimensional carbon allotrope, graphdiyne possesses a direct band gap, excellent charge carrier mobility, and uniformly distributed pores. Here, a surfactant-free growth method is developed to efficiently synthesize graphdiyne hollow microspheres at liquid‒liquid interfaces with a self-supporting structure, which avoids the influence of surfactants on product properties. We demonstrate that pristine graphdiyne hollow microspheres, without any additional functionalization, show a strong surface-enhanced Raman scattering effect with an enhancement factor of 3.7 × 107 and a detection limit of 1 × 10−12 M for rhodamine 6 G, which is approximately 1000 times that of graphene. Experimental measurements and first-principles density functional theory simulations confirm the hypothesis that the surface-enhanced Raman scattering activity can be attributed to an efficiency interfacial charge transfer within the graphdiyne-molecule system.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42038-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42038-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42038-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42038-3