EconPapers    
Economics at your fingertips  
 

4D Optical fibers based on shape-memory polymers

Clément Strutynski (), Marianne Evrard, Frédéric Désévédavy, Grégory Gadret, Jean-Charles Jules, Claire-Hélène Brachais, Bertrand Kibler and Frédéric Smektala
Additional contact information
Clément Strutynski: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne
Marianne Evrard: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne
Frédéric Désévédavy: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne
Grégory Gadret: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne
Jean-Charles Jules: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne
Claire-Hélène Brachais: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne
Bertrand Kibler: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne
Frédéric Smektala: Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 CNRS-Université de Bourgogne

Nature Communications, 2023, vol. 14, issue 1, 1-11

Abstract: Abstract Adaptative objects based on shape-memory materials are expected to significantly impact numerous technological sectors including optics and photonics. In this work, we demonstrate the manufacturing of shape-memory optical fibers from the thermal stretching of additively manufactured preforms. First, we show how standard commercially-available thermoplastics can be used to produce long continuously-structured microfilaments with shape-memory abilities. Shape recovery as well as programmability performances of such elongated objects are assessed. Next, we open the way for light-guiding multicomponent fiber architectures that are able to switch from temporary configurations back to user-defined programmed shapes. In particular, we show that distinct designs of fabricated optical fibers can maintain efficient light transmission upon completion of multiple temperature-triggered bending/straightening cycles. Such fibers are also programmed into more complex shapes including coils or near 180 ° curvatures for delivering laser light around obstacles. Finally, a shape-memory exposed-core fiber is employed in fiber evanescent wave spectroscopy experiments to optimize the performance of the sensing scheme. We strongly expect that such actuatable fibers with light-guiding abilities will trigger exciting progress of unprecedented smart devices in the areas of photonics, electronics, or robotics.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42355-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42355-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42355-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42355-7