A random optical parametric oscillator
Pedro Tovar (),
Jean Pierre von der Weid,
Yuan Wang,
Liang Chen and
Xiaoyi Bao
Additional contact information
Pedro Tovar: University of Ottawa
Jean Pierre von der Weid: Pontifical Catholic University of Rio de Janeiro
Yuan Wang: University of Ottawa
Liang Chen: University of Ottawa
Xiaoyi Bao: University of Ottawa
Nature Communications, 2023, vol. 14, issue 1, 1-9
Abstract:
Abstract Synchronously pumped optical parametric oscillators (OPOs) provide ultra-fast light pulses at tuneable wavelengths. Their primary drawback is the need for precise cavity control (temperature and length), with flexibility issues such as fixed repetition rates and marginally tuneable pulse widths. Targeting a simpler and versatile OPO, we explore the inherent disorder of the refractive index in single-mode fibres realising the first random OPO – the parametric analogous of random lasers. This novel approach uses modulation instability (χ(3) non-linearity) for parametric amplification and Rayleigh scattering for feedback. The pulsed system exhibits high inter-pulse coherence (coherence time of ~0.4 ms), offering adjustable repetition rates (16.6–2000 kHz) and pulse widths (0.69–47.9 ns). Moreover, it operates continuously without temperature control loops, resulting in a robust and flexible device, which would find direct application in LiDAR technology. This work sets the stage for future random OPOs using different parametric amplification mechanisms.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-42452-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42452-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-42452-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().