EconPapers    
Economics at your fingertips  
 

Discovery of isoflavone phytoalexins in wheat reveals an alternative route to isoflavonoid biosynthesis

Guy Polturak (), Rajesh Chandra Misra, Amr El-Demerdash, Charlotte Owen, Andrew Steed, Hannah P. McDonald, JiaoJiao Wang, Gerhard Saalbach, Carlo Martins, Laetitia Chartrain, Barrie Wilkinson, Paul Nicholson and Anne Osbourn ()
Additional contact information
Guy Polturak: John Innes Centre
Rajesh Chandra Misra: John Innes Centre
Amr El-Demerdash: John Innes Centre
Charlotte Owen: John Innes Centre
Andrew Steed: John Innes Centre
Hannah P. McDonald: John Innes Centre
JiaoJiao Wang: John Innes Centre
Gerhard Saalbach: John Innes Centre
Carlo Martins: John Innes Centre
Laetitia Chartrain: John Innes Centre
Barrie Wilkinson: John Innes Centre
Paul Nicholson: John Innes Centre
Anne Osbourn: John Innes Centre

Nature Communications, 2023, vol. 14, issue 1, 1-17

Abstract: Abstract Isoflavones are a group of phenolic compounds mostly restricted to plants of the legume family, where they mediate important interactions with plant-associated microbes, including in defense from pathogens and in nodulation. Their well-studied health promoting attributes have made them a prime target for metabolic engineering, both for bioproduction of isoflavones as high-value molecules, and in biofortification of food crops. A key gene in their biosynthesis, isoflavone synthase, was identified in legumes over two decades ago, but little is known about formation of isoflavones outside of this family. Here we identify a specialized wheat-specific isoflavone synthase, TaCYP71F53, which catalyzes a different reaction from the leguminous isoflavone synthases, thus revealing an alternative path to isoflavonoid biosynthesis and providing a non-transgenic route for engineering isoflavone production in wheat. TaCYP71F53 forms part of a biosynthetic gene cluster that produces a naringenin-derived O-methylated isoflavone, 5-hydroxy-2′,4′,7-trimethoxyisoflavone, triticein. Pathogen-induced production and in vitro antimicrobial activity of triticein suggest a defense-related role for this molecule in wheat. Genomic and metabolic analyses of wheat ancestral grasses further show that the triticein gene cluster was introduced into domesticated emmer wheat through natural hybridization ~9000 years ago, and encodes a pathogen-responsive metabolic pathway that is conserved in modern bread wheat varieties.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42464-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42464-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42464-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42464-3