Electrochemical halogen-atom transfer alkylation via α-aminoalkyl radical activation of alkyl iodides
Xiang Sun and
Ke Zheng ()
Additional contact information
Xiang Sun: Sichuan University
Ke Zheng: Sichuan University
Nature Communications, 2023, vol. 14, issue 1, 1-9
Abstract:
Abstract Alkyl halides, widely recognized as important building blocks and reagents in organic synthesis, can serve as versatile alkyl radical precursors in radical-based transformations. However, generating alkyl radicals directly from unactivated alkyl halides under mild conditions remains a challenge due to their extremely low reduction potentials. To address this issue, α-aminoalkyl radicals were employed as efficient halogen-atom transfer (XAT) reagents in the photoredox activation of unactivated alkyl halides. Here, we report an effective electrooxidation strategy for generating alkyl radicals from unactivated alkyl iodides via an electrochemical halogen-atom transfer (e-XAT) process under mild conditions. The α-aminoalkyl radicals generated by anodic oxidation are demonstrated to be efficient XAT reagents in these transformations. This facile electricity-driven strategy obviates the need for sacrificial anodes and external chemical oxidants. The method successfully applies to a wide variety of alkyl iodides, including primary, secondary, and tertiary, as well as structurally diverse olefins, exhibiting excellent functional group tolerance. Moreover, we further demonstrate the utility of this strategy by rapidly functionalizing complex molecules and biomolecules.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-42566-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42566-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-42566-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().