EconPapers    
Economics at your fingertips  
 

Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming

Hao Wu, Xiufeng Zhao, Sophia M. Hochrein, Miriam Eckstein, Gabriela F. Gubert, Konrad Knöpper, Ana Maria Mansilla, Arman Öner, Remi Doucet-Ladevèze, Werner Schmitz, Bart Ghesquière, Sebastian Theurich, Jan Dudek, Georg Gasteiger, Alma Zernecke, Sebastian Kobold, Wolfgang Kastenmüller and Martin Vaeth ()
Additional contact information
Hao Wu: Julius-Maximilians University of Würzburg
Xiufeng Zhao: Julius-Maximilians University of Würzburg
Sophia M. Hochrein: Julius-Maximilians University of Würzburg
Miriam Eckstein: Julius-Maximilians University of Würzburg
Gabriela F. Gubert: Julius-Maximilians University of Würzburg
Konrad Knöpper: Julius-Maximilians University of Würzburg
Ana Maria Mansilla: Julius-Maximilians University of Würzburg
Arman Öner: University Hospital
Remi Doucet-Ladevèze: Julius-Maximilians University of Würzburg
Werner Schmitz: Julius-Maximilians University of Würzburg
Bart Ghesquière: Center for Cancer Biology, VIB
Sebastian Theurich: Cancer and Immunometabolism Research Group
Jan Dudek: Julius-Maximilians University of Würzburg
Georg Gasteiger: Julius-Maximilians University of Würzburg
Alma Zernecke: University Hospital Würzburg
Sebastian Kobold: University Hospital
Wolfgang Kastenmüller: Julius-Maximilians University of Würzburg
Martin Vaeth: Julius-Maximilians University of Würzburg

Nature Communications, 2023, vol. 14, issue 1, 1-18

Abstract: Abstract T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42634-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42634-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42634-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42634-3