EconPapers    
Economics at your fingertips  
 

Mott insulators with boundary zeros

N. Wagner, L. Crippa, A. Amaricci, P. Hansmann, M. Klett, E. J. König, T. Schäfer, D. Di Sante, J. Cano, A. J. Millis, A. Georges and G. Sangiovanni ()
Additional contact information
N. Wagner: Universität Würzburg
L. Crippa: Universität Würzburg
A. Amaricci: Consiglio Nazionale delle Ricerche
P. Hansmann: Friedrich-Alexander-Universität Erlangen-Nürnberg
M. Klett: Max-Planck-Institut für Festkörperforschung
E. J. König: Max-Planck-Institut für Festkörperforschung
T. Schäfer: Max-Planck-Institut für Festkörperforschung
D. Di Sante: University of Bologna
J. Cano: Flatiron Institute
A. J. Millis: Flatiron Institute
A. Georges: Flatiron Institute
G. Sangiovanni: Universität Würzburg

Nature Communications, 2023, vol. 14, issue 1, 1-8

Abstract: Abstract The topological classification of electronic band structures is based on symmetry properties of Bloch eigenstates of single-particle Hamiltonians. In parallel, topological field theory has opened the doors to the formulation and characterization of non-trivial phases of matter driven by strong electron-electron interaction. Even though important examples of topological Mott insulators have been constructed, the relevance of the underlying non-interacting band topology to the physics of the Mott phase has remained unexplored. Here, we show that the momentum structure of the Green’s function zeros defining the “Luttinger surface" provides a topological characterization of the Mott phase related, in the simplest description, to the one of the single-particle electronic dispersion. Considerations on the zeros lead to the prediction of new phenomena: a topological Mott insulator with an inverted gap for the bulk zeros must possess gapless zeros at the boundary, which behave as a form of “topological antimatter” annihilating conventional edge states. Placing band and Mott topological insulators in contact produces distinctive observable signatures at the interface, revealing the otherwise spectroscopically elusive Green’s function zeros.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42773-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42773-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42773-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42773-7