EconPapers    
Economics at your fingertips  
 

Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors

L. J. Stanley, Ping V. Lin, J. Jaroszyński and Dragana Popović ()
Additional contact information
L. J. Stanley: Florida State University
Ping V. Lin: Florida State University
J. Jaroszyński: Florida State University
Dragana Popović: Florida State University

Nature Communications, 2023, vol. 14, issue 1, 1-8

Abstract: Abstract The absence of thermalization in certain isolated many-body systems is of great fundamental interest. Many-body localization (MBL) is a widely studied mechanism for thermalization to fail in strongly disordered quantum systems, but it is still not understood precisely how the range of interactions affects the dynamical behavior and the existence of MBL, especially in dimensions D > 1. By investigating nonequilibrium dynamics in strongly disordered D = 2 electron systems with power-law interactions ∝ 1/rα and poor coupling to a thermal bath, here we observe MBL-like, prethermal dynamics for α = 3. In contrast, for α = 1, the system thermalizes, although the dynamics is glassy. Our results provide important insights for theory, especially since we obtained them on systems that are much closer to the thermodynamic limit than synthetic quantum systems employed in previous studies of MBL. Thus, our work is a key step towards further studies of ergodicity breaking and quantum entanglement in real materials.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42778-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42778-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42778-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42778-2