Negative capacitors and inductors enabling wideband waveguide metatronics
Xu Qin,
Pengyu Fu,
Wendi Yan,
Shuyu Wang,
Qihao Lv and
Yue Li ()
Additional contact information
Xu Qin: Tsinghua University
Pengyu Fu: Tsinghua University
Wendi Yan: Tsinghua University
Shuyu Wang: Tsinghua University
Qihao Lv: Tsinghua University
Yue Li: Tsinghua University
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Waveguide metatronics, known as an advanced platform of metamaterial-inspired circuits, provides a promising paradigm for millimeter-wave and terahertz integrated circuits in future fifth/sixth generation (5/6G) communication systems. By exploiting the structural dispersion properties of waveguides, a lumped type of waveguide integrated elements and circuits could be developed in deep subwavelength scales with intrinsic low loss and low crosstalk. In this study, we focus on constructing negative capacitors and inductors for waveguide metatronics, effectively expanding the operating frequency range of waveguide integrated circuits. The incorporation of negative elements enables wideband impedance matching in waveguide, which have been both theoretically explored and experimentally validated within the waveguide metatronics paradigm. Furthermore, we have demonstrated that the negative elements can also be realized in the optical domain through the utilization of a silicon waveguide with photonic crystal cladding, indicating the feasibility and universality of wideband waveguide metatronics. The negative lumped elements could boost the progress of the waveguide metatronic technique, achieving superior performance on the conventional lumped circuits within waveguides that solely rely on positive elements.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-42808-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42808-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-42808-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().