EconPapers    
Economics at your fingertips  
 

Time-domain observation of interlayer exciton formation and thermalization in a MoSe2/WSe2 heterostructure

Veronica R. Policht (), Henry Mittenzwey (), Oleg Dogadov, Manuel Katzer, Andrea Villa, Qiuyang Li, Benjamin Kaiser, Aaron M. Ross, Francesco Scotognella, Xiaoyang Zhu, Andreas Knorr, Malte Selig, Giulio Cerullo and Stefano Dal Conte ()
Additional contact information
Veronica R. Policht: Politecnico di Milano
Henry Mittenzwey: Technische Universität Berlin
Oleg Dogadov: Politecnico di Milano
Manuel Katzer: Technische Universität Berlin
Andrea Villa: Politecnico di Milano
Qiuyang Li: Columbia University
Benjamin Kaiser: Zuse-Institut Berlin
Aaron M. Ross: Politecnico di Milano
Francesco Scotognella: Politecnico di Milano
Xiaoyang Zhu: Columbia University
Andreas Knorr: Technische Universität Berlin
Malte Selig: Technische Universität Berlin
Giulio Cerullo: Politecnico di Milano
Stefano Dal Conte: Politecnico di Milano

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-42915-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42915-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-42915-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42915-x