Multiple E3 ligases control tankyrase stability and function
Jerome Perrard and
Susan Smith ()
Additional contact information
Jerome Perrard: New York University School of Medicine
Susan Smith: New York University School of Medicine
Nature Communications, 2023, vol. 14, issue 1, 1-17
Abstract:
Abstract Tankyrase 1 and 2 are ADP-ribosyltransferases that catalyze formation of polyADP-Ribose (PAR) onto themselves and their binding partners. Tankyrase protein levels are regulated by the PAR-binding E3 ligase RNF146, which promotes K48-linked polyubiquitylation and proteasomal degradation of tankyrase and its partners. We identified a novel interaction between tankyrase and a distinct class of E3 ligases: the RING-UIM (Ubiquitin-Interacting Motif) family. We show that RNF114 and RNF166 bind and stabilize monoubiquitylated tankyrase and promote K11-linked diubiquitylation. This action competes with RNF146-mediated degradation, leading to stabilization of tankyrase and its binding partner, Angiomotin, a cancer cell signaling protein. Moreover, we identify multiple PAR-binding E3 ligases that promote ubiquitylation of tankyrase and induce stabilization or degradation. Discovery of K11 ubiquitylation that opposes degradation, along with identification of multiple PAR-binding E3 ligases that ubiquitylate tankyrase, provide insights into mechanisms of tankyrase regulation and may offer additional uses for tankyrase inhibitors in cancer therapy.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-42939-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42939-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-42939-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().