Charge-loop current order and Z3 nematicity mediated by bond order fluctuations in kagome metals
Rina Tazai (),
Youichi Yamakawa and
Hiroshi Kontani
Additional contact information
Rina Tazai: Kyoto University
Youichi Yamakawa: Nagoya University
Hiroshi Kontani: Nagoya University
Nature Communications, 2023, vol. 14, issue 1, 1-9
Abstract:
Abstract Recent experiments on geometrically frustrated kagome metal AV3Sb5 (A = K, Rb, Cs) have revealed the emergence of the charge loop current (cLC) order near the bond order (BO) phase. However, the origin of the cLC and its interplay with other phases have been uncovered. Here, we propose a novel mechanism of the cLC state, by focusing on the BO phase common in kagome metals. The BO fluctuations in kagome metals, which emerges due to the Coulomb interaction and the electron-phonon coupling, mediate the odd-parity particle-hole condensation that gives rise to the topological current order. Furthermore, the predicted cLC+BO phase gives rise to the Z3-nematic state in addition to the giant anomalous Hall effect. The present theory predicts the close relationship between the cLC, the BO, and the nematicity, which is significant to understand the cascade of quantum electron states in kagome metals. The present scenario provides a natural understanding.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-42952-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42952-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-42952-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().