EconPapers    
Economics at your fingertips  
 

A cost comparison of various hourly-reliable and net-zero hydrogen production pathways in the United States

Justin M. Bracci, Evan D. Sherwin, Naomi L. Boness and Adam R. Brandt ()
Additional contact information
Justin M. Bracci: Stanford University
Evan D. Sherwin: Stanford University
Naomi L. Boness: Stanford University
Adam R. Brandt: Stanford University

Nature Communications, 2023, vol. 14, issue 1, 1-13

Abstract: Abstract Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors, but to maximize emission reductions, supplied hydrogen must be reliable, low-emission, and low-cost. Here, we build a model that enables direct comparison of the cost of producing net-zero, hourly-reliable hydrogen from various pathways. To reach net-zero targets, we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California, Texas, and New York), model results indicate next-decade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However, when omitting the net-zero emission constraint and considering the U.S. regulatory environment, electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-43137-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43137-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-43137-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43137-x