EconPapers    
Economics at your fingertips  
 

Synthesis of dienes from pyrrolidines using skeletal modification

Haitao Qin, Ting Guo, Ken Lin, Guigen Li and Hongjian Lu ()
Additional contact information
Haitao Qin: Nanjing University
Ting Guo: Nanjing University
Ken Lin: Nanjing University
Guigen Li: Texas Tech University
Hongjian Lu: Nanjing University

Nature Communications, 2023, vol. 14, issue 1, 1-8

Abstract: Abstract Saturated N-heterocyclic pyrrolidines are common in natural products, medicinal compounds and agrochemicals. However, reconstruction of their skeletal structures creating new chemical space is a challenging task, and limited methods exist for this purpose. In this study, we report a skeletal modification strategy for conversion of polar cyclic pyrrolidines into nonpolar linear dienes through a N-atom removal and deconstruction process. This involves N-sulfonylazidonation followed by rearrangement of the resulting sulfamoyl azide intermediates. This can be an energetically unfavorable process, which involves the formation of active C–C π bonds, the consumption of inert C–N and C–C σ bonds and the destruction of stable five-membered rings, but we have used it here to produce versatile conjugated and nonconjugated dienes with links of varying lengths. We also studied the application of this method in late-stage skeletal modification of bioactive compounds, formal traceless C(sp2)–H functionalization and formal N-atom deletion.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-43238-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43238-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-43238-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43238-7