Deep learning of human polyadenylation sites at nucleotide resolution reveals molecular determinants of site usage and relevance in disease
Emily Kunce Stroup and
Zhe Ji ()
Additional contact information
Emily Kunce Stroup: Northwestern University
Zhe Ji: Northwestern University
Nature Communications, 2023, vol. 14, issue 1, 1-17
Abstract:
Abstract The genomic distribution of cleavage and polyadenylation (polyA) sites should be co-evolutionally optimized with the local gene structure. Otherwise, spurious polyadenylation can cause premature transcription termination and generate aberrant proteins. To obtain mechanistic insights into polyA site optimization across the human genome, we develop deep/machine learning models to identify genome-wide putative polyA sites at unprecedented nucleotide-level resolution and calculate their strength and usage in the genomic context. Our models quantitatively measure position-specific motif importance and their crosstalk in polyA site formation and cleavage heterogeneity. The intronic site expression is governed by the surrounding splicing landscape. The usage of alternative polyA sites in terminal exons is modulated by their relative locations and distance to downstream genes. Finally, we apply our models to reveal thousands of disease- and trait-associated genetic variants altering polyadenylation activity. Altogether, our models represent a valuable resource to dissect molecular mechanisms mediating genome-wide polyA site expression and characterize their functional roles in human diseases.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-43266-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43266-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-43266-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().