EconPapers    
Economics at your fingertips  
 

Straightforward synthesis of functionalized γ-Lactams using impure CO2 stream as the carbon source

Yuman Qin, Robin Cauwenbergh, Suman Pradhan, Rakesh Maiti, Philippe Franck and Shoubhik Das ()
Additional contact information
Yuman Qin: University of Bayreuth
Robin Cauwenbergh: Universiteit Antwerpen
Suman Pradhan: University of Bayreuth
Rakesh Maiti: University of Bayreuth
Philippe Franck: Universiteit Antwerpen
Shoubhik Das: University of Bayreuth

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract Direct utilization of CO2 into organic synthesis finds enormous applications to synthesize pharmaceuticals and fine chemicals. However, pure CO2 gas is essential to achieve these transformations, and the purification of CO2 is highly cost and energy intensive. Considering this, we describe a straightforward synthetic route for the synthesis of γ-lactams, a pivotal core structure of bioactive molecules, by using commercially available starting materials (alkenes and amines) and impure CO2 stream (exhaust gas is collected from the car) as the carbon source. This blueprint features a broad scope, excellent functional group compatibility and application to the late-stage transformation of existing pharmaceuticals and natural products to synthesize functionalized γ-lactams. We believe that our strategy will provide direct access to γ-lactams in a very sustainable way and will also enhance the Carbon Capture and Utilization (CCU) strategy.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-43289-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43289-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-43289-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43289-w