EconPapers    
Economics at your fingertips  
 

Strong transient magnetic fields induced by THz-driven plasmons in graphene disks

Jeong Woo Han, Pavlo Sai, Dmytro B. But, Ece Uykur, Stephan Winnerl, Gagan Kumar, Matthew L. Chin, Rachael L. Myers-Ward, Matthew T. Dejarld, Kevin M. Daniels, Thomas E. Murphy, Wojciech Knap and Martin Mittendorff ()
Additional contact information
Jeong Woo Han: Universität Duisburg-Essen, Fakultät für Physik
Pavlo Sai: CENTERA Laboratories, Institute of High Pressure Physics PAS
Dmytro B. But: CENTERA Laboratories, Institute of High Pressure Physics PAS
Ece Uykur: Helmholtz-Zentrum Dresden-Rossendorf
Stephan Winnerl: Helmholtz-Zentrum Dresden-Rossendorf
Gagan Kumar: Indian Institute of Technology
Matthew L. Chin: University of Maryland
Rachael L. Myers-Ward: U.S. Naval Research Laboratory
Matthew T. Dejarld: U.S. Naval Research Laboratory
Kevin M. Daniels: University of Maryland
Thomas E. Murphy: University of Maryland
Wojciech Knap: CENTERA Laboratories, Institute of High Pressure Physics PAS
Martin Mittendorff: Universität Duisburg-Essen, Fakultät für Physik

Nature Communications, 2023, vol. 14, issue 1, 1-7

Abstract: Abstract Strong circularly polarized excitation opens up the possibility to generate and control effective magnetic fields in solid state systems, e.g., via the optical inverse Faraday effect or the phonon inverse Faraday effect. While these effects rely on material properties that can be tailored only to a limited degree, plasmonic resonances can be fully controlled by choosing proper dimensions and carrier concentrations. Plasmon resonances provide new degrees of freedom that can be used to tune or enhance the light-induced magnetic field in engineered metamaterials. Here we employ graphene disks to demonstrate light-induced transient magnetic fields from a plasmonic circular current with extremely high efficiency. The effective magnetic field at the plasmon resonance frequency of the graphene disks (3.5 THz) is evidenced by a strong ( ~ 1°) ultrafast Faraday rotation ( ~ 20 ps). In accordance with reference measurements and simulations, we estimated the strength of the induced magnetic field to be on the order of 0.7 T under a moderate pump fluence of about 440 nJ cm−2.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-43412-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43412-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-43412-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43412-x