The two-qubit singlet/triplet measurement is universal for quantum computing given only maximally-mixed initial states
Terry Rudolph () and
Shashank Soyuz Virmani ()
Additional contact information
Terry Rudolph: Imperial College London
Shashank Soyuz Virmani: Brunel University London
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract In order to delineate which minimalistic physical primitives can enable the full power of universal quantum computing, it has been fruitful to consider various measurement based architectures which reduce or eliminate the use of coherent unitary evolution, and also involve operations that are physically natural. In this context previous works had shown that the triplet-singlet measurement of two qubit angular momentum (or equivalently two qubit exchange symmetry) yields the power of quantum computation given access to a few additional different single qubit states or gates. However, Freedman, Hastings and Shokrian-Zini1 recently proposed a remarkable conjecture, called the ‘STP=BQP’ conjecture, which states that the two-qubit singlet/triplet measurement is quantum computationally universal given only an initial ensemble of maximally mixed single qubits. In this work we prove this conjecture. This provides a method for quantum computing that is fully rotationally symmetric (i.e. reference frame independent), using primitives that are physically very-accessible, naturally resilient to certain forms of error, and provably the simplest possible.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-43481-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43481-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-43481-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().