The anti-symmetric and anisotropic symmetric exchange interactions between electric dipoles in hafnia
Longju Yu,
Hong Jian Zhao (),
Peng Chen,
Laurent Bellaiche and
Yanming Ma ()
Additional contact information
Longju Yu: Jilin University
Hong Jian Zhao: Jilin University
Peng Chen: University of Arkansas
Laurent Bellaiche: University of Arkansas
Yanming Ma: Jilin University
Nature Communications, 2023, vol. 14, issue 1, 1-9
Abstract:
Abstract The anti-symmetric and anisotropic symmetric exchange interactions between two magnetic dipole moments – responsible for intriguing magnetic textures (e.g., magnetic skyrmions) – have been discovered since last century, while their electric analogues were either hidden for a long time or still not known. It is only recently that the anti-symmetric exchange interactions between electric dipoles was proved to exist (with materials hosting such an interaction being still rare) and the existence of anisotropic symmetric exchange interaction between electric dipoles remains ambiguous. Here, by symmetry analysis and first-principles calculations, we identify hafnia as a candidate material hosting the non-collinear dipole alignments, the analysis of which reveals the anti-symmetric and anisotropic symmetric exchange interactions between electric dipoles in this material. Our findings can hopefully deepen the current knowledge of electromagnetism in condensed matter, and imply the possibility of discovering novel states of matter (e.g., electric skyrmions) in hafnia-related materials.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-43593-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43593-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-43593-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().