Augmenting interpretable models with large language models during training
Chandan Singh (),
Armin Askari,
Rich Caruana and
Jianfeng Gao
Additional contact information
Chandan Singh: Microsoft Research
Armin Askari: University of California
Rich Caruana: Microsoft Research
Jianfeng Gao: Microsoft Research
Nature Communications, 2023, vol. 14, issue 1, 1-11
Abstract:
Abstract Recent large language models (LLMs), such as ChatGPT, have demonstrated remarkable prediction performance for a growing array of tasks. However, their proliferation into high-stakes domains and compute-limited settings has created a burgeoning need for interpretability and efficiency. We address this need by proposing Aug-imodels, a framework for leveraging the knowledge learned by LLMs to build extremely efficient and interpretable prediction models. Aug-imodels use LLMs during fitting but not during inference, allowing complete transparency and often a speed/memory improvement of greater than 1000x for inference compared to LLMs. We explore two instantiations of Aug-imodels in natural-language processing: Aug-Linear, which augments a linear model with decoupled embeddings from an LLM and Aug-Tree, which augments a decision tree with LLM feature expansions. Across a variety of text-classification datasets, both outperform their non-augmented, interpretable counterparts. Aug-Linear can even outperform much larger models, e.g. a 6-billion parameter GPT-J model, despite having 10,000x fewer parameters and being fully transparent. We further explore Aug-imodels in a natural-language fMRI study, where they generate interesting interpretations from scientific data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-43713-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43713-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-43713-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().