EconPapers    
Economics at your fingertips  
 

Catalytic stereodivergent allylic alkylation of 2-acylimidazoles for natural product synthesis

Ruimin Lu, Qinglin Zhang and Chang Guo ()
Additional contact information
Ruimin Lu: University of Science and Technology of China
Qinglin Zhang: University of Science and Technology of China
Chang Guo: University of Science and Technology of China

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract The stereocontrolled allylic alkylation of carbonyl compounds with the goal of producing the full range of stereoisomers presents an effective approach for increasing the productivity of collective natural product synthesis and the creation of chiral molecule libraries for drug exploration. The simultaneous control of regio-, diastereo-, and enantioselectivity poses a significant synthetic challenge in contemporary organic synthesis. Herein, we describe a catalytic stereodivergent α-allylation protocol applicable to both aliphatic and aromatic 2-acylimidazoles, thereby providing a practical blueprint for the divergent synthesis of important chiral building blocks. Each of the six isomeric α-allylated compounds can be readily obtained with remarkable yields and exceptional stereoselectivities, by judiciously selecting the appropriate leaving group and permutations of enantiomers adapted from nickel and iridium catalysts. The versatility of this asymmetric allylic alkylation has been successfully utilized in the enantioselective synthesis of (R)-arundic acid and (S,S)-cinamomumolide, as well as in the stereodivergent total synthesis of tapentadol.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-43986-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43986-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-43986-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43986-6