EconPapers    
Economics at your fingertips  
 

In operando cryo-STEM of pulse-induced charge density wave switching in TaS2

James L. Hart, Saif Siddique, Noah Schnitzer, Stephen D. Funni, Lena F. Kourkoutis and Judy J. Cha ()
Additional contact information
James L. Hart: Cornell University
Saif Siddique: Cornell University
Noah Schnitzer: Cornell University
Stephen D. Funni: Cornell University
Lena F. Kourkoutis: Cornell University
Judy J. Cha: Cornell University

Nature Communications, 2023, vol. 14, issue 1, 1-7

Abstract: Abstract The charge density wave material 1T-TaS2 exhibits a pulse-induced insulator-to-metal transition, which shows promise for next-generation electronics such as memristive memory and neuromorphic hardware. However, the rational design of TaS2 devices is hindered by a poor understanding of the switching mechanism, the pulse-induced phase, and the influence of material defects. Here, we operate a 2-terminal TaS2 device within a scanning transmission electron microscope at cryogenic temperature, and directly visualize the changing charge density wave structure with nanoscale spatial resolution and down to 300 μs temporal resolution. We show that the pulse-induced transition is driven by Joule heating, and that the pulse-induced state corresponds to the nearly commensurate and incommensurate charge density wave phases, depending on the applied voltage amplitude. With our in operando cryogenic electron microscopy experiments, we directly correlate the charge density wave structure with the device resistance, and show that dislocations significantly impact device performance. This work resolves fundamental questions of resistive switching in TaS2 devices, critical for engineering reliable and scalable TaS2 electronics.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-44093-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44093-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-44093-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44093-2